Design Status of the CERN-SRAM macrocell

IBM 0.25 µm User Group Meeting
Imperial College, London
June 2002

KLOUKINAS Kostas
EP/CME-PS
CERN-SRAM specifications

- **Scalable Design**
 - Configurable Bit organization (n x 9-bit).
 - Configurable Memory Size.

- **Synchronous Dual-Port Operation**
 - Allowing Read/Write operations on the same clock cycle.
 - Typical Operating Frequency: 40 Mhz.

- **Low Power Design**
 - Full Static Operation.
 - Two stage hierarchical word decoding.

- **Radiation Tolerant Design**
SRAM Design in 0.25µ

Scalability is accomplished with the use of replica row cells and wordlines.

Low Power is enhanced by gating bit-line & word-line precharge cycles when not accessing the memory.
Dual Port SRAM

block diagram

Dual-port functionality is realized with a time sharing access mechanism.

- Registered Inputs
- Latched Outputs
Timing of the SRAM Interface

WRITE
READ
READ/WRITE

t_s t_H

clk
WA
RA
W
R
Din
Dout
Basic Layout Blocks

WordLine Buffers

SRAM column, 128 x 9 bits
(50.4 µm x 1086.2 µm)

Input Data Registers

Address Registers

Timing logic

Column Decoder

Row Decoder

Output Data Mux

Output Data Latches
Modular SRAM design.
Submitted SRAM Chips

- 1st Prototype (CERN MPW 4)
- Configuration: 1Kx9 bit
- Size: ~560µm x 1,300µm
- Area: ~0.73mm²
- Chip Received: Feb 2001
- Tested: Apr. 2001
- Status: O.K.

Design: CERN_SRAM_1K
Designer: Kloukinas Kostas
EP/CME-PS
Submitted SRAM Chips

- 2nd Prototype (CERN MPW 5)
- Configuration: 4Kx9 bit
- Size: ~1,850µm x 1,300µm
- Area: ~2.4mm²
- Submitted: May 2001
- Chip Received: Aug. 2001
- Tested: Oct. 2001
- Status: O.K.

Design: CERN_SRAM_4K
Designer: Kloukinas Kostas
EP/CME-PS
CERN SRAM test results

Functional tests

- Max operating frequency:
 - Read only operations per clock cycle: 75MHz @ 2.5V
 - Read/Write operations per clock cycle: 60MHz @ 2.5V
- Read access time: 7.0ns @ 2.5V
- Power dissipation:
 - 15µW / MHz @ 2.5V for R/W operations within the same clock cycle (0.60mW @ 40MHz).
- Tests for process variations:
 - Differences in the access time < 1ns for: -3σ, -1.5σ, typ, +1.5σ, +3σ

Test chip: 4Kx9bit
Clock Duty Cycle Tests

50MHz Read per cycle Read/Write per cycle

55MHz Read per cycle Read/Write per cycle

Duty Cycle variations

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Duty Cycle Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 MHz</td>
<td>50% ± 20%</td>
</tr>
<tr>
<td>55 MHz</td>
<td>50% ± 10%</td>
</tr>
<tr>
<td>60 MHz</td>
<td>50% ± 5%</td>
</tr>
</tbody>
</table>

Test chip: 4Kx9bit
Power dissipation

Test chip: 4Kx9bit

<table>
<thead>
<tr>
<th>Operation</th>
<th>Power (uW/MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>0.10</td>
</tr>
<tr>
<td>NOP</td>
<td>1.90</td>
</tr>
<tr>
<td>Read</td>
<td>7.40</td>
</tr>
<tr>
<td>Write</td>
<td>10.60</td>
</tr>
<tr>
<td>Read/Write</td>
<td>14.05</td>
</tr>
</tbody>
</table>

Test Conditions

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
<th>Pattern File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby</td>
<td>No operation, addr. & data in to highz</td>
<td>nop1.set</td>
</tr>
<tr>
<td>NOP</td>
<td>No operation, addr. & data changing in every c</td>
<td>nop2.set</td>
</tr>
<tr>
<td>Read</td>
<td>checkerboard data pattern</td>
<td>SRAM_0.set</td>
</tr>
<tr>
<td>Write</td>
<td>checkerboard data pattern</td>
<td>SRAM_0.set</td>
</tr>
<tr>
<td>Read/Write</td>
<td>checkerboard data pattern</td>
<td>SRAM_1.set</td>
</tr>
</tbody>
</table>
Irradiation Tests

Ionizing Total Dose: up to 10MRad
- No increase in power dissipation.
- No measurable degradation in performance.

Single Event Upset:
- under preparation
 (in collaboration with CERN EP/MIC group)

Test chip: 4Kx9bit
CERN SRAM popularity!

- **ATLAS SCAC chip**
 - Memory configuration: 128 x 18 bit
 - Detector: ATLAS tracker
 - Lab: NEVIS Labs
 - Designer: Stephan Boettcher
 - Status: Tested O.K.

- **ATLAS DTMROC chip**
 - Memory configuration: 128 x 153 bits
 - Detector: ATLAS TRT
 - Lab: CERN
 - Designer: Robert Szczygiel
 - Status: Tested O.K.

- **CMS K chip**
 - Memory configuration: 2K x 18 bits
 - Detector: CMS Preshower
 - Lab: CERN
 - Designer: Kostas Kloukinas
 - Status: work in progress

- **ATLAS MCC chip**
 - Memory configuration: 128 x 27 bit
 - Detector: ATLAS PIXEL
 - Lab: INFN Genova
 - Designer: Roberto Beccherle
 - Status: Tested O.K.

- **ALICE AMBRA chip**
 - Memory configuration: 16K X 9 bits
 - Detector: ALICE Silicon Drift Det.
 - Lab: INFN Torino
 - Designer: Gianni Mazza
 - Status: Submitted

- **ALICE CARLOS chip**
 - Memory configuration: 256 X 9 bits
 - Detector: ALICE Silicon Drift Det.
 - Lab: INFN Bologna
 - Designer: Alessandro Gabrielli
 - Status: work in progress
Design Support

- Delivery of SRAM design library
- Half a day “design course” @ CERN
- Designer configures his macrocell
- Review the macrocell design
Conclusions

Design Status
- Design meets specifications.
- Macrocell has been successfully used in a number of ASIC designs.

Future Plans
- None. No further development is foreseen.

Design Support
- Contact Person: Kostas.Kloukinas@CERN.ch

Information on the Web
- http://home.cern.ch/kkloukin